RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Satuan Pendidikan : SMA Negeri Oenopu

Mata Pelajaran : FISIKA

Kelas/Semester : X/ Genap

Materi Pokok : Gerak lurus dengan Kecepatan konstan

Pembelajaran Ke 1

Alokasi Waktu : 10 menit

A. Kompetensi Inti

KI 1 : Menghayati dan mengamalkan ajaran agama yang dianutnya

KI 2 : Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.

KI 3 : Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual, prosedural berdasarkan rasa ingintahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah

 KI 4 : Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metoda sesuai kaidah keilmuan

B. Kompetensi Dasar dan Indikator Pencapaian Kompetensi

Kompetensi Dasar	Indikator
3.4 Menganalisis besaran-besaran fisis pada gerak lurus dengan kecepatan konstan (tetap) dan gerak lurus dengan percepatan konstan (tetap) berikut penerapannya dalam kehidupan sehari-hari misalnya keselamatan lalu lintas	3.4.1 Menganalisis besaran-besaran fisis padagerak lurus dengan kecepatan konstan
4.4 Menyajikan data dan grafik hasil percobaan gerak benda untuk menyelidiki karakteristik gerak lurus dengan kecepatan konstan (tetap) dan gerak lurus dengan percepatan konstan (tetap) berikut makna fisisnya	4.4.1 Mempresentasikan hasil diskusi percobaan gerak lurus dengan kecepatan konstan (GLB) dan gerak lurus dengan percepatan konstan (GLBB).

C. Tujuan Pembelajaran

Melalui kegiatan pembelajaran *Discovery Learning* peserta didik dapat menganalisis besaran-besaran fisis pada gerak lurus dengan kecepatan konstan serta mengembangkan nilai karakter berpikir kritis, kreatif (**kemandirian**), kerja sama (**gotong royong**) dan kejujuran (**integritas**)

D. Materi Pembelajaran

- 1. Fakta
 - 1. Benda begerak jika kedudukannya berubah terhadap titikacuan
 - Spedometer pada kendaraan menunjukkan kelajuankendaraan bukan kecepatan
 - 3. Kecepatan diukur dengan Velocitometer

2. Konsep

- a. Jarak didefenisikan sebagai panjang lintasan yang ditempuh oleh suatu benda dalam selang waktu tertentu
- b. Perpindahan didefinisikan sebagai perubahan kedudukan suatu benda dalam selang waktu tertentu
- c. Jarak dan kelajuan merupakan besaran skalar sedangkan perpindahan dan kecepatan adalah besaran vector
- d. Kelajuan adalah cepat lambatnya perubahan jarak terhadap waktu yang merupakan besaran skalar dan nilainya selalu positif
- e. Kecepatan adalah cepat lambatnya perubahan kedudukan suatu benda terhadap waktu dan merupakan besaran vektor sehingga memiliki arah.

3. Prosedur

- a. Diskusi mengenai jarak dan perpindahan
- b. Diskusi mengenai kelajuan dan kecepatan

E. Metode Pembelajaran

Pendekatan :Ilmiah (sciencetific)
 Model :Discovery learning
 Metode :Tanya jawab, diskusi

F. Media dan Alat Pembelajaran

Media : LKPD, Lembar Penilaian
 Alat Pembelajaran : meter, spidol, papan tulis

G. Sumber Pembelajaran

- 1. Tim Masmedia Buana Pustaka, Fisika untuk SMA/MA Kelas X, Masmedia, Jakarta 2018
- 2. Marthen Kanginan, Fisika SMA/MA Kelas X, Erlangga, Jakarta 2016
- 3. Suyatman, Fisika Jilid 1 untuk SMA/MA Kelas X, Media Prestasi, Sidoarjo, 2018

H. Langkah Pembelajaran

Kegiatan/Sintak	Deskripsi	Nilai karakter		
		yang dikembangkan		
Pendahuluan	1. Memberikan salam dan berdoa sebelum	Religius		
	memulai pelajaran			
	2. Mengecek kehadiran siswa	Disiplin		
	3. Mengajukan pertanyaan apersepsi:			
	Menurut anda apakah jarak sama dengan			
	perpindahan? Berikan contohnya			
	Coba gambarkan peta sederhana dari ruang			
	kelas anda ke ruang Lab, dengan titik acuan adalah ruang kelas, kemudian hitung besar			
	jarak dan perpindahannya			
	4. Memberikan motivasi berupa:			
	Gambaran mengenai pokok materi yang			
	akan di pelajari			
	Setelah mempelajari materi ini maka anda			
	diharapkan dapat menjelaskan perbedaan			
	antara jarak dan perpindahan, kelajuan dan			
	kecepatan			
T7 • 4 T 4•	Menyampaikan tujuan pembelajaran			
Kegiatan Inti	Mongamati			
1. Stimulation	Mengamati Guru meminta 2 orang peserta didik pada	Kemandirian		
(stimullasi/	tempat duduk paling depan maju ke depan	(Berpikir kritis,		
pemberian	kelas. Salah satu peserta didik diarahkan maju	kreatif)		
rangsangan)	ke meja guru, sedangkan peserta didik kedua	,		
	diminta memberi tanda dari posisi awal di			
	depan ke meja guru dan mengukur panjang			
2 D 11	lintasan yang dilalui peserta didik pertama			
2. Problem	Menanya	<i>V</i>		
statemen	Guru memberikan kesempatan kepada peserta	Kemandirian		
(pertanyaan/ identifikasi	didik untuk mengamati dan bertanya mengenai demonstrasi yang telah diakukan			
masalah)	demonstrasi yang telah diakakan			
3. Data	Pengumpulan data			
collection	Peserta didik di bagi dalam beberapa			
(pengumpulan	kelompok yang terdiri dari 4 orang			
data)	Peserta didik diberikan lembaran diskusi			
	siswa			
	Setiap peserta didik diberikan kesempatan mengumpulkan materi tentang besaran-			
	besaran pada gerak lurus dari sumber-			
	sumber yang relevan			
	Guru memberikan bimbingan dan peserta			
	didik memperhatikan penjelasan dari guru			
	terkait materi gerak lurus			
4. Verification	Mengasosiasi			
(pembuktian)	Peserta didik mengisi lembar diskusi yang			
	diberikan terkait materi tentang besaran-			
	besaran pada gerak lurus dengan memverifikasi data-data hasil pengamatan			
	memvernikasi dala-dala nashi pengamatan			

	dengan teori pada buku sumber	
5. Generalization	Mengkomunikasikan	
(menarik	Peserta didik menyampaikan hasil diskusi	
kesimpulan)	kelompok dengan cara mempresentasikan	
1	materi tentang besaran-besaran pada gerak	
	lurus secara klasikal	
	Peserta didik yang lain mengemukakan	Kemandirian
	pendapat dan bertanya tentang materi yang	(Berpikir kritis,
	di presentasikan kepada kelompok yang	kreatif)
	mempresentasikan	
	> Pendapat dan pertanyaan ditanggapi oleh	
	oleh kelompok yang mempresentasikan	
	juga diberi kesempatan untuk peserta didik	
	lain menjawab	
	> Jika ada peserta didik masih kesulitan	
	memahami maka guru menanggapi hasil	
	diskusi	
	Guru memberikan soal evaluasi (uji	
	kompetensi) kepada peserta didik untuk	
	mengecek penguasaan peserta didik	
D	terhadap materi yang diajarkan	To do a series and
Penutup	Guru dan siswa mereview materi dan	Integritas
	menarik kesimpulan tentang besaran- besaran pada gerak lurus.	
	 Peserta didik membuat resume dari materi 	
	yang telah dipelajari	
	Guru memeriksa hasil evaluasi siswa	
	terhadap materi yang telah dipelajari	
	 Memberikan penghargaan kepada peserta 	
	didik terhadap materi yang telah dipelajari	
	> Salam penutup	

I. Penilaian Hasil Pembelajaran

1. Rancangan Penilaian

a. Penilaian Pengetahuan

> Tertulis

Tes tertulis dalam bentuk uraian mengenai penyelesaian soal jarak dan perpindahan serta soal kelajuan dan kecepatan

- > Tes Lisan
- > Penugasan

b. Penilaian Keterampilan

> Penilaian Unjuk Kerja

Mengerjakan latihan soal-soal terkait materi yang diajarkan.

> Penilaian Portofolio

Menyusun dan membuat rangkuman dari tugas-tugas yang sudah diselesaikan.

c. Penilaian Sikap

Observasi tentang nilai-nilai karakter yang terbangun dan tertanam dalam diri peserta didik dan dituangkan dalam jurnal

2. Instrumen Penilaian

a. Pengetahuan : Soal uraian (Lampiran 2)

b. **Ketrampilan** : Rubrik penilaian kinerja dan portofolio (lampiran 3 dan 4)

c. Sikap : Jurnal pengamatan sikap (lampiran 5)

Mengetahui, Kepala SMA Negeri Oenopu Oenopu, 17 Januari 2022 Guru Mapel Fisika

<u>Bernadus Leki, S.Si</u> NIP.19821207 201001 1 020 <u>Petronela Muti, S. Pd</u> NIP.19830502 2001001 2 037

LAMPIRAN-LAMPIRAN

LAMPIRAN 1

LEMBAR KERJA PESERTA DIDIK (LKPD)

SATUAN PENDIDIKAN : SMA NEGERI OENOPU

KELAS/SEMESTER : X/GENAP ALOKASI WAKTU : 10 MENIT

Kompetensi Dasar

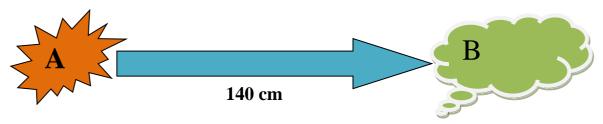
3.4 Menganalisis besaran-besaran fisis pada gerak lurus dengan kecepatan konstan (tetap) dan gerak lurus dengan percepatan konstan (tetap) berikut penerapannya dalam kehidupan sehari-hari misalnya keselamatan lalu lintas

Indikator

Menganalisis besaran-besaran fisis pada gerak lurus dengan kecepatan konstan

Tujuan Pembelajaran

Melalui kegiatan pembelajaran *Discovery Learning* peserta didik dapat menganalisisbesaranbesaran fisika pada gerak dengan kecepatan konstan dengan benar


Materi

- > Jarak dan Perpindahan
- > Kelajuan dan Kecepatan

Langkah-langkah kegiatan:

- 1. Mengamati demonstrasi yang dilakukan oleh 2 orang peserta didik
- 2. Bacalah sumber buku yang disediakan.
- 3. Kerjakan soal di bawah ini dalam diskusi kelompok
- 4. Presentasikan hasil diskusi kelompok anda

Mengamati

Maria berjalan dari titik A ke titik B, lalu Anton mengukur panjang lintasan dari titik A ke B sehinnga diperoleh panjang 140 cm. Dapatkah anda dapat menghitung jarak dan perpindahan yang terjadi? Sesungguhnya jarak merupakan besaran vektor sedangkan perpindahan merupakan besaran skalar

Apakah kalian tahu gambar apa di atas? Banyak alat transportasi seperti sepeda motor, mobil, pesawat dan kapal laut dilengkapi dengan alat yang disebut spidometer. Jika dikendaraanmu terdapat spidometer besaran fisika apa yang terukur pada alat tersebut? Dan mengapa disebut dengan spidometer? Ternyata yang terukur pada spedometer adalah kelajuan karena sesungguhnya kelajuan dan kecepatan itu berbeda akan tetapi banyak yang menyamakannya. Sedangkan alat pengukur kecepatan adalah velocitymeter

Setelah mengamati hasil demonstrasi teman anda, maka selesaikan soal di bawah ini:

1.	Dari ilustrasi Anton dan Maria diatas dapatkah kalian jelaskan apa yang dimaksud dengan jarak dan perpindahan?
2.	Mungkinkah besar jarak dan Perpindahan bernilai sama? Jelaskan danberikan contohnya!
3.	Dapatkah benda yang menempuh jarak tertentu mempunyai perpindahan nol? Jelaskan!
4.	Bisakah kita mengukur atau menghitung kecepatan benda pada suatuwaktu tertentu? Tuliskan dengan persamaan matematis yang digunakan!

5.	Bagaimana caranya kita menentukkan kelajuan dan kecepatan sesaat padaspedometer motor yang dikendarai?
6.	Jelaskan perbedaan antara kelajuan dan kecepatan
7.	Tuliskan persamaan matematis dari kelajuan dan kecepatan
8.	Seorang siswa diminta berlari dilapangan sepakbola. Dari titik pojok lapangandia berlari ke
	timur hingga sejauh 80 m dalam waktu 25 sekon. Kemudian melanjutkan ke arah utara
	hingga sejauh 60 m dalam waktu 15 s.
	• Bagaimana perbandingan antara nilai jarak dan perpindahannya?
	Bagaimana kalian menentukkan kelajuan dan kecepatan rata-rata siswa?

Lampiran 2 Kisi-Kisi Soal Penilaian Hasil Belajar

Indikator Pencapaian Kompetensi	Materi Pembelajaran	Indikator Soal	Bentuk Soal	Contoh Soal
Menganalisis besaran – besaran fisika pada gerak dengan kecepatan konstan	n	Menghitung jarak dan perpindahan yang ditempuh oleh seseorang yang bergerak dari arah selatan ke utara dan balik lagi ke arah	C3	1
	* ** 1	timur	C4	2
	♣ Kelajuan dan kecepatan	Diberikan suatu persamaan gerak sepeda motor yang bergerak lurus dengan persamaan $x = 4t^2 + 2t - 2$, dimana x dalam meter dan tdalam sekon kemudian pesertadidik diminta untuk menentukkan: a. Kecepatan rata-rata sepeda motor antara selang waktut = 1 s dan $t = 2$ s Kecepatan saat $t = 3$ s		

Soal

- 1. Ani berjalan dari arah selatan ke Utara sejauh 8 meter, kemudian belok ke timur 6 meter. Berapakah jarak dan perpindahan yang telah ditempuh Ani?
- 2. Sebuah sepeda motor bergerak lurus dinyatakan dengan persamaan $x = 4t^2 + 2t 2$, dengan x dalam meter dan t dalam sekon. Tentukkan :
 - a. Kecepatan rata-rata sepeda antara selang waktu t = 1 s dan t = 2 s
 - b. Kecepatan saat t = 3 s

Jawaban:

No	Jawaban	Skor			
1.	$ \begin{array}{ccc} \mathbf{U} & & & & & & & \\ & & & & & & & \\ & & & & $	5			
	$Perpindahan = ST$ $Perpindahan = \sqrt{8^2 + 6^2}$ $Perpindahan = \sqrt{100}$ $Perpindahan = 10m$	5			
2.	a. Persamaan kedudukan $x = 4t^2 + 2t - 2$ $t = 1 \text{ s} \rightarrow x_1 = 4(1^2) + 2(1) - 2 = 4$ $t = 2 \text{ s} \rightarrow x_2 = 4(2^2) + 2(2) - 2 = 18$ kecepatan rata-rata adalah : $\overline{v} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$ $\overline{v} = \frac{18 - 4}{2 - 1} = 14m/s$	5			
Kecepatan sesaat pada $t = 3s$ $t = 3s \rightarrow x = 4(3^2) + 2(3) - 2 = 40$ sehingga $v = \frac{x}{t} = \frac{40}{3} = 13,3m/s$					
	Jumlah Skor	20			

$$Nilai = \frac{Skor\ perolehan}{Skor\ maksimum} x 100$$

PENILAIAN PENUGASAN

Kerjakan soal berikut ini tepat

- 1. Sebuah mobil melintas di jalan raya dengan kelajuan 25 m/s/ Hitunglah jarak yang ditempuh motor tersebut selama 2 jam !
- 2. Angga menumpang sebuah bus dn melaju dengan kecepatan 110 km/jam untuk pergi ke kota B dari kota A yang berjarak 275 km. Hitunglah waktu yang diperlukan Annga untuk sampai ke kota B!

LAMPIRAN 3

PENILAIAN KINERJA/PRAKTEK

N O	NAMA SISWA	M		GAMA ME		MEMBAC A			BERDISKU SI			PENULIS AN HASIL DISKUSI				PRESENTA SI HASIL DISKUSI				JUML AH SKOR		
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	SKOK
1																						
2																						
3																						

Keterangan:

1= Kurang

2= Cukup

3=Baik

4=Sangat baik

$$Nilai = \frac{Skor}{Skor} \frac{perolehan}{maksimum} x100$$

Kriteri Nilai: 56-70 (Cukup), 71-85 (baik), 86-100 (Sangat Baik)

LAMPIRAN 4

Rubrik Penilaian Portofolio

- 1. Merangkum semua materi
- 2. Kesesuaian merangkum sesuai dengan materi yang sudah dipelajari
- 3. Kreatifitas catatan
- 4. Ketepan waktupengumpulan tugas ringkasan materi
- 5. Kerapihan hasil ringkasan materi

Keterangan Penilaian:

Skor 2 untuk kondisi lengkap semua komponen

Skor 1 untuk kondisi komponen ada dan tidak lengkap

Skor 0 untuk kondisi komponen tidak ada

$$Nilai = \frac{Skor\ perolehan}{Skor\ maksimum} x100$$

Kriteri Nilai: 56-70 (Cukup), 71-85 (baik), 86-100 (Sangat Baik)

LAMPIRAN 5

Jurnal Pengamatan Proses Pembelajaran

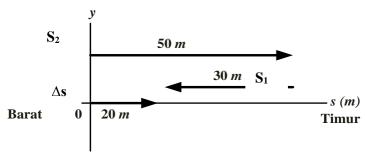
NO	Hari/Tanggal	Nama Peserta Didik	Uraian Kegiatan	Solusi/Tindak Lanjut
1				
2				
3				
4				
dst				

Lampiran 6

BAHAN AJAR

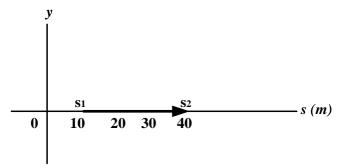
NAMA SOKOLAH : SMA NEGERI OENOPU

KELAS : X


MATERI : GERAK LURUS

Gerak adalah perubahan posisi (kedudukan) suatu benda terhadap sebuah acuan tertentu.

a) Jarak dan Perpindahan


Jarak dan perpindahan memiliki pengertian yang berbeda. *Jarak* diartikan sebagai panjang lintasan yang ditempuh oleh suatu benda dalam selang waktu tertentu, dan merupakan besaran skalar. *Perpindahan* adalah perubahan kedudukan suatu benda dalam selang waktu tertentu dan merupakan besaran vektor. Untuk melihat perbedaan antara jarak total dan perpindahan, misalnya seseorang berjalan sejauh 50 m ke arah Timur dan kemudian berbalik (ke arah Barat) dan berjalan menempuh jarak 30 m, (gambar 2.1). Jarak total yang ditempuh adalah 80 m, tetapi perpindahannya hanya 20 m karena posisi orang itu pada saat ini hanya berjarak 20 m dari titik awalnya.

Gambar: 2.1 Grafik jarak.

Perpindahan benda ini dapat dituliskan:

$$\Delta s = s_2 - s_1 \qquad(1)$$

Gambar: 2.2 Grafik perpindahan ke arah kanan. Perpindahan yang terjadi dinyatakan:

$$\Delta s = s_2 - s_1$$

$$= 40 \text{ m} - 10 \text{ m}$$

$$= 30 \text{ m (ke kanan)}$$

Gambar: 2.3 Grafik perpindahan ke arah kiri.

Perpindahan yang terjadi dinyatakan:

$$\Delta s = s_2 - s_1$$

$$= 10 \text{ m} - 40 \text{ m}$$

$$= -30 \text{ m (ke kiri)}$$

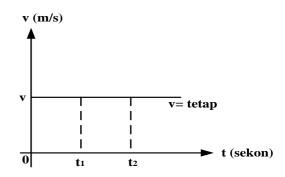
Tanda panah tebal yang menyatakan vektor perpindahan menunjuk ke kiri. Hal tersebut menggambarkan bahwa ketika membahas gerak satu dimensi, vektor yang mengarah ke kanan memiliki nilai positif, sedangkan yang mengarah ke kiri memiliki nilai negatif.

b) Gerak Lurus Beraturan (GLB)

Suatu benda dikatakan mengalami *gerak lurus beraturan* jika lintasan yang ditempuh oleh benda itu berupa garis lurus dan kecepatannya selalu tetap setiap saat. Sebuah benda yang bergerak lurus menempuh jarak yang sama untuk selang waktu yang sama.

Sebagai contoh, apabila dalam waktu 5 sekon pertama sebuah mobil menempuh jarak 100 m, maka untuk waktu 5 sekon berikutnya mobil itu juga menempuh jarak 100 m. Secara matematis, persamaan gerak lurus beraturan (GLB) adalah:

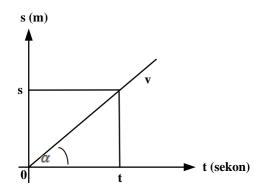
$$s = v.t$$
 atau $v = \frac{s}{t}$ (2)


Keterangan:

s: jarak yang ditempuh (m)

v: kecepatan (m/s)

t: waktu yang diperlukan (s)

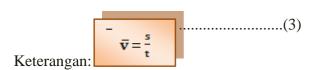

Jika kecepatan v mobil yang bergerak dengan laju konstan selama selama waktu t sekon, diilustrasikan dalam sebuah grafik v-t, akan diperoleh sebuah garis lurus.

Gambar: 2.4 Grafik v terhadap t

Grafik hubungan *v-t* tersebut menunjukkan bahwa kecepatan benda selalu tetap, tidak tergantung pada waktu, sehingga grafiknya merupakan garis lurus yang sejajar dengan sumbu

t (waktu).

Gambar 2.5 Grafik s terhadap t


Sementara itu, hubungan jarak yang ditempuh s dengan waktu t, diilustrasikan dalam sebuah grafik s-t, sehingga diperoleh sebuah garis diagonal ke atas. Dari grafik hubungan s-t dapat dikatakan jarak yang ditempuh s benda berbanding lurus dengan waktu tempuh t. Makin besar waktunya makin besar jarak yang ditempuh., grafik hubungan antara jarak s terhadap waktu t secara matematis merupakan harga tan α , di mana α adalah sudut antara garis grafik dengan sumbu t (waktu).

1. Kelajuan dan Kecepatan

a. Kelajuan Rata-Rata

"kelajuan" atau "laju" menyatakan seberapa jauh sebuah benda bergerak dalam selang waktu tertentu. Jika sebuah mobil menempuh 240 km dalam waktu 3 jam, dapat kita katakan bahwa laju rata-ratanya adalah 80 km/jam. Secara umum, laju rata-rata sebuah benda didefinisikan sebagai jarak total yang ditempuh sepanjang lintasannya dibagi waktu yang diperlukan untuk menempuh jarak tersebut.

Secara matematis ditulis:

 \bar{v} : laju rata-rata (m/s)

s: jarak total yang ditempuh (m)

t: waktu tempuh yang diperlukan (s)

Laju adalah sebuah bilangan positif dengan satuan m/s, yang menyatakan perbandingan jarak yang ditempuh oleh benda terhadap waktu yang dibutuhkannya.

b. Kecepatan Rata-Rata

Kecepatan digunakan untuk menyatakan baik besar (nilai numerik) mengenai seberapa cepat sebuah benda bergerak maupun arah geraknya. Dengan demikian, kecepatan merupakan besaran vektor. Ada perbedaan kedua antara laju dan kecepatan, yaitu kecepatan rata-rata didefinisikan dalam hubungannya dengan perpindahan, dan bukan dalam jarak total yang ditempuh:

$$V = \frac{s - s_0}{t - t_0} = \frac{\Delta s}{\Delta t}$$
 (4)

keterangan:

 \bar{v} : kecepatan rata-rata (m/s)

 Δs : perpindahan benda (m)

 Δt : interval waktu yang diperlukan (s)

2. Kecepatan Sesaat

Kecepatan sesaat suatu benda merupakan kecepatan benda pada suatu waktu tertentu. Untuk menentukannya Anda perlu mengukur jarak tempuh dalam selang waktu (Δt) yang sangat singkat, misalnya 1/10 sekon atau 1/50 sekon. Secara matematis dapat dinyatakan sebagai berikut.

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

Maka persamaan matematis kecepatan sesaat dapat ditulis sebagai berikut.

$$v = \frac{\Delta s}{\Delta t} \qquad(5)$$

Keterangan:

 Δs : perpindahan (m) Δt : selang waktu (s)

3. Percepatan

Percepatan adalah perubahan kecepatan dan atau arah dalam selang waktu tertentu. Percepatan merupakan besaran vektor. Percepatan berharga

positif jika kecepatan suatu benda bertambah dalam selang waktu tertentu.

Percepatan berharga negatif jika kecepatan suatu benda berkurang dalam selang waktu tertentu.

1) Percepatan Rata-rata

Percepatan rata-rata (\dot{a}) adalah hasil bagi antara perubahan kecepatan (Δv) dengan selang waktu yang digunakan selama perubahan kecepatan tersebut (Δt). Secara matematis dapat ditulis sebagai berikut.

$$\overline{a} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1} \qquad (6)$$

Keterangan:

 \bar{a} : perceptan rata-rata (m/s^2)

 \bar{v} : perubahan kecepatan (m/s)

 Δt : selang waktu (s)

 v_1 : kecepatan awal (m/s)

 v_2 : kecepatan akhir (m/s)

 t_1 : waktu awal (s)

 t_2 : waktu akhir (s)

Contoh soal:

Kecepatan gerak sebuah mobil berubah dari 10 m/s menjadi 16 m/s dalam selang waktu 3 sekon. Berapakah percepatan rata-rata mobil dalam selang waktu tersebut?

Penyelesaian:

Diketahui:

$$v_1 = 10 \ m/s$$

$$v_2 = 16 \, m/s$$

$$\Delta t = 3 \ s$$

Ditanya: $= \bar{a} \dots$?

Jawab:

$$\overline{a} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{\Delta t} = \frac{(16 - 10)m/s}{3s} = 2m/s^2$$

2) Percepatan Sesaat

Percepatan sesaat adalah perubahan kecepatan dalam waktu yang sangat singkat. Seperti halnya menghitung kecepatan sesaat, untuk menghitung percepatan sesaat, perlu mengukur perubahan kecepatan dalam selang waktu yang singkat (mendekati nol). Secara matematis dapat ditulis sebagai berikut.

$$\overline{\boldsymbol{a}} = \frac{\Delta \boldsymbol{v}}{\Delta t}$$
, dengan Δt sangat kecil(7)