RENCANA PELAKSANAAN PEMBELAJARAN (RPP) SIMULASI MENGAJAR

Satuan Pendidikan : SMA ...

Mata Pelajaran : Kimia

Kelas/Semester : XII/Gasal

Tahun Pelajaran : 2020/2021

Tema : REAKSI REDOKS DAN ELEKTROKIMIA
Sub Tema : Stoikiometri Reaksi Elektrolisis

Alokasi Waktu : 10 menit

A. KD, IPK dan Tujuan Pembelajaran

Ко	mpetensi Dasar (KD)	Indikator Pencapaian Kompetensi (IPK)	Tujuan Pembelajaran	
3.6	Menerapkan	3.6.1. Menerapkan	Setelah melaksanakan kegiatan pembelajaran menggunakan	
	stoikiometri reaksi	stoikiometri reaksi redoks	Model <i>Problem Solving</i> dan pendekatan <i>Scientific</i> dengan	
	redoks dan hukum	yang melibatkan muatan	menggali informasi dari berbagai sumber dalam diskusi	
	Faraday untuk	listrik (Coulomb dan	kelompok diharapkan:	
	menghitung besaran	Faraday) dan Arus Listrik	1. Peserta didik dapat menerapkan stoikiometri reaksi redoks	
	besaran yang terkait	(Ampere) dalam sel	yang melibatkan muatan listrik (Coulomb dan Faraday) dan	
	sel elektrolisis	elektrolisis	Arus Listrik (Ampere) dalam sel elektrolisis,	
4.6	Menyajikan	3.6.2. Menerapkan	2. Peserta didik dapat menerapkan stoikiometri reaksi redoks	
	rancangan prosedur	stoikiometri reaksi redoks	yang melibatkan arus listrik yang sama dialirkan ke dalam	
	penyepuhan benda	yang melibatkan arus listrik	dua atau lebih sel elektrolisis yang berbeda	
-	dari logam dengan	yang sama dialirkan ke	3. Peserta didik dapat menyajikan rancangan percobaan untuk	
	ketebalan lapisan dan	dalam dua atau lebih sel	melapisi logam besi (paku) dengan logam tembaga,	
	luas tertentu	elektrolisis yang berbeda	dengan terlibat aktif dalam kegiatan pembelajaran, percaya diri	
		4.6.1. Menyajikan rancangan	dalam berpendapat dan bertanya, serta komunikatif dalam	
		percobaan untuk melapisi	menemukan konsep keilmuan.	
		logam besi (paku) dengan		
		logam tembaga		

B. Kegiatan Pembelajaran

1. Pendekatan, Model, Metode

Pendekatan	Model	Metode	
Saintifik (scientific)	Problem Solving	Diskusi Kelompok, Diskusi Kelas, dan Tanya Jawab	

2. Alat, Media, dan Sumber Belajar

Alat	Media	Sumber Belajar		
Whiteboard, LCD	Power Point	1.	. Purba, M. 2007. Kimia Untuk SMA Kelas XII Semester 1. Jakarta: Erlangga.	
projector, Laptop,	dan LKPD	2.	2. Sudarmo, U. 2013. Kimia untuk SMA/MA Kelas XII. Jakarta: Erlangga.	
Boardmaker		3.	Chang, R. 2005. Kimia Dasar Konsep-Konsep Inti Edisi Ketiga Jilid 2. Jakarta: Erlangga.	
		4.	Yuni, N., dkk. 2019. KIMIA Kelas XII. Yogyakarta: Intan Pariwara.	

3. Langkah-Langkah Pembelaiaran

5. Langkan-Langkan Pembelajaran							
Pendahuluan	Inti	Penutup					
(2 menit)	(6 menit)	(2 menit)					
1. Guru memberi	1. Tahap 1 : Memahami Masalah	1. Guru memberikan umpan balik					
salam, dilanjutkan	Pengelompokan peserta didik sesuai dengan kelompok yang telah	yang berisi latihan soal evaluasi					
berdoa, melakukan	ditentukan sebelumnya. Peserta didik diberikan Lembar Kerja	kepada peserta didik untuk					
absensi peserta	Peserta Didik dan diberikan waktu untuk memahami masalah yang	mengaplikasikan pengalaman					
didik, dan motivasi	diberikan.	belajar mereka <i>(Teliti, jujur, dan</i>					
2. Guru	2. Tahap 2: Menentukan Rencana Strategi Penyelesaian Masalah	tanggung jawab)					
menyampaikan	Guru mengorientasikan peserta didik dengan diskusi informatif	2. Guru memberikan tugas					
apersepsi dan	menggunakan Presentasi Power Point mengembangkan solusi	kelompok untuk pertemuan					
tujuan	pemecahan masalah dengan panduan LKPD disertai dengan	pembelajaran berikutnya					
pembelajaran	Gerakan Literasi, mencari informasi dari berbagai sumber belajar.	mengenai penyajian rancangan					
3. Guru	3. Tahap 3: Menyelesaikan Strategi Penyelesaian Masalah	percobaan untuk melapisi logam					
menyampaikan	Guru membimbing peserta didik dalam diskusi kelompok untuk	besi (paku) dengan logam					
Teknik penilaian	menyelesaikan strategi pemecahan masalah dengan panduan LKPD	tembaga					
yaitu sikap,	disertai dengan Gerakan Literasi, mencari informasi dari berbagai	3. Guru menutup kegiatan dengan					
pengetahuan dan	sumber belajar.	doa dan salam					
ketrampilan							

Pendahuluan	Inti	Penutup
(2 menit)	(6 menit)	(2 menit)
	4. Tahap 4: Memeriksa Kembali Jawaban Yang Diperoleh	
	Guru bersama peserta didik memeriksa dan membahas hasil diskusi.	
	Selanjutnya, bersama menemukan kesimpulan dari materi yang	
	dipelajari dan membimbing peserta didik untuk membuat	
	rangkuman untuk membiasakan rasa mandiri pada peserta didik.	
	(Kolaborasi, berpikir kritis, komunikatif, aktif, percaya diri, dan Literasi)	

C. Penilaian Pembelajaran

No	Aspek yang dinilai	Teknik Penilaian	Waktu Penilaian	Bentuk Instrumen
1	Sikap Sikap yang dinilai meliputi sikap keaktifan mengikuti pelajaran, percaya diri dalam berpendapat dan bertanya.	Observasi	Selama proses pembelajaran, saat diskusi kelompok	Rubrik Penilaian Aspek Sikap
2	Pengetahuan Pemahaman dan penerapan konsep	Penugasan	Penutup	Evaluasi
3	Keterampilan Keterampilan berkomunikasi secara lisan dalam menerapkan konsep dan strategi pemecahan masalah yang relevan	Observasi	Selama proses pembelajaran, saat diskusi kelompok	Rubrik Penilaian Aspek Ketrampilan

Mengetahui, Kepala Sekolah Kebumen, 30 Desember 2020 Guru Mata Pelajaran

Khanifudin, M. Pd

Dyah Woro Hastuti, S. Pd

1. Penilaian Aspek Sikap

RUBRIK PENILAIAN ASPEK SIKAP

Kriteria yang dinilai:

- 1. Keaktifan mengikuti pembelajaran
- 2. Percaya diri dalam berpendapat
- 3. Percaya diri dalam bertanya

Penskoran

Kriteria	Skor	Indikator
	4	Peserta didik merespon pertanyaan guru dan ada pertanyaan yang diajukan
	3	Peserta didik merespon pertanyaan guru namun tidak ada pertanyaan yang
		diajukan
Keaktifan mengikuti pelajaran	2	Peserta didik kurang merespon pertanyaan guru namun ada pertanyaan yang
		diajukan
Carlo Carlo	1	Peserta didik kurang merespon pertanyaan guru dan tidak ada pertanyaan yang
		diajukan
	4	Yakin dalam menyatakan pendapat dengan argumen yang kuat
Percaya diri dalam berpendapat	3	Ragu-ragu dalam menyatakan pendapat, tetapi dengan argumen kuat
reicaya diri dalam berpendapat	2	Yakin dalam menyatakan pendapat, tetapi dengan argument meragukan
	1	Ragu-ragu dalam menyatakan pendapat dan argumen meragukan
	4	Berani bertanya dan kualitas pertanyaannya berbobot
Parsaya diri dalam hortanya	3	Ragu-ragu bertanya namun kualitas pertanyaannya berbobot
Percaya diri dalam bertanya	2	Berani bertanya tetapi kualitas pertanyaannya kurang berbobot
	1	Ragu-ragu bertanya dan kualitas pertanyaannya kurang berbobot

Pengolahan Penilaian Aspek Sikap

No.	Nama	Skor kriteria yang dinilai			Jumlah Skor	Nilai
		1	2	3	(20)	IVIIdi

Keterangan:

- Skor maksimal = Jumlah skor tertinggi setiap kriteria
- Nilai Sikap = $\frac{Skor\ perolehan}{Skor\ maksimal} \times 100$
- Konversi data kuantitatif ke dalam data kualitatif

Data kuantitatif	Data kualitatif	
×≥80	Sangat Baik	
60 ≤ × < 80	Baik	
40 ≤ × < 60	Sedang/ Cukup	
20 ≤ × < 40	Kurang Baik	
×<20	Sangat Kurang Baik	

- 2. Penilaian aspek Pengetahuan: Evaluasi
- 3. Penilaian aspek Keterampilan

RUBRIK PENILAIAN ASPEK KETERAMPILAN

Kriteria yang dinilai:

Kemampuan berkomunikasi secara lisan

Penskoran

Kriteria	Skor	Indikator
OF PERSON	4	Peserta didik mampu berkomunikasi dengan konsep yang benar dan intonasi
	- 100	jelas
Kemampuan berkomunikasi	3	Peserta didik mampu berkomunikasi dengan konsep yang benar tetapi intonasi
		kurang jelas
secara lisan	2	Peserta didik kurang mampu berkomunikasi dengan konsep yang benar tetapi
		intonasi jelas
	1	Peserta didik kurang mampu berkomunikasi dengan konsep yang benar dan
		intonasi kurang jelas

Pengolahan Penilaian Aspek Keterampilan

		Skor		
No.	Nama	Kemampuan berkomunikasi secara lisan	Jumlah Skor	Nilai
			All the same of	

Keterangan:

- Skor maksimal = Jumlah skor tertinggi setiap kriteria
- Nilai Sikap = $\frac{Skor\ perolehan}{Skor\ maksimal} \times 100$
- Konversi data kuantitatif ke dalam data kualitatif

Data kuantitatif	Data kualitatif
×≥80	Sangat Baik
60 ≤ × < 80	Baik
40 ≤ × < 60	Sedang/ Cukup
20 ≤ × < 40	Kurang Baik
×<20	Sangat Kurang Baik

4. Pembelajaran Remedial dan Pengayaan

- Peserta didik yang belum mencapai batas ketuntasan minimal mengulang kembali materi yang belum dikuasai.
- Peserta didik yang sudah mencapai ketuntasan belajar mengerjakan tugas dengan tingkat kesulitan yang lebih tinggi.

LAMPIRAN 2. Soal Evaluasi, Remidial, dan Pengayaan

SOAL EVALUASI

Kisi-Kisi Soal Uraian

Satuan Pendidikan : SMA ...

Mata Pelajaran : Kimia

Kelas / Semester : XII / Gasal

Tema : REAKSI REDOKS DAN ELEKTROKIMIA

No.	Kompetensi Dasar	Sub Tema	Indikator Soal	Level Kognitif	No. Soal	Bentuk Soal
			Stoikiometri reaksi redoks yang melibatkan muatan listrik (Coulomb) dalam sel elektrolisis	Konseptual C3	1	Uraian
	Menerapkan stoikiometri reaksi redoks dan hukum	Stoikiometri	Stoikiometri reaksi redoks yang melibatkan muatan listrik (Faraday) dalam sel elektrolisis	Konseptual C3	2	Uraian
3.6.	Faraday untuk menghitung besaran besaran yang terkait sel	Reaksi Elektrolisis	Stoikiometri reaksi redoks yang melibatkan Arus Listrik (Ampere) dalam sel elektrolisis	Konseptual C3	3	Uraian
	elektrolisis		Stoikiometri reaksi redoks yang melibatkan arus listrik yang sama dialirkan ke dalam dua atau lebih sel elektrolisis yang berbeda	Konseptual C3	4	Uraian

Rumusan Butir Soal Uraian Berdasarkan Kisi-Kisi di atas.

- 1. Tentukan massa endapan yang dihasilkan dari elektrolisis larutan AgCl dengan elektroda grafit menggunakan muatan listrik sebesar 9650 C! (Ar Ag = 108 g mol⁻¹)
- 2. Tentukan volume gas yang dihasilkan dalam keadaan STP jika larutan Na₂SO₄ dielektrolisis dengan elektroda Pt menggunakan muatan listrik sebesar 0,2 F!
- 3. Aluminium diperoleh dari elektrolisis lelehan Al₂O₃. Berapa gram aluminium yang dapat diperoleh jika digunakan arus 10 ampere selama 5 menit? (Ar Al=27 g mol⁻¹).
- 4. Pada elektrolisis larutan CuSO₄ dihasilkan 25,4 gram endapan Cu pada katode. Hitunglah volume gas H₂ (0° C, 1 atm) yang dibebaskan pada elektrolisis larutan H₂SO₄ encer dengan jumlah arus listrik yang sama! (Ar Cu = 63,5 g mol⁻¹; Ar O = 16 g mol⁻¹)

Pedoman Penskoran

No.	Jawaban	Skor				
1.	Tentukan massa endapan yang dihasilkan dari elektrolisis larutan AgCl dengan elektroda grafit menggunakan					
	muatan listrik sebesar 9650 C! (Ar Ag = 108 g mol ⁻¹)					
	Jawab					
	Reaksi elektrolisis Larutan AgCl dengan elektroda grafit yang menghasilkan endapan berada di Katode:					
	$AgCl(aq) \rightarrow Ag^{+}(aq) + Cl^{-}(aq)$	2				
	Katode: $Ag^+(aq) + 1e^- \rightarrow Ag(s)$ (endapan yang dihasilkan adalah Endapan Ag)					
	0.550.0	3				
- 110	muatan listrik 9650 $C = \frac{9650 C}{96500 C/mol e^-} = 0.1 mol e^-$	3				
C	/ mol e					
	Katode: $Ag^+(aq) + 1e^- \rightarrow Ag(s)$					
	Mol 0,1 mol 0,1 mol	5				
	$= 0.1 mol \times 108 \frac{g}{mol}$					
	Massa $= 0.1 \text{ Mot } \times 100 $					
	Jadi massa endapan yang dihasilkan dari elektrolisis larutan AgCl dengan elektroda grafit adalah 10,8 g Perak					
2.	Tentukan volume gas yang dihasilkan dalam keadaan STP jika larutan Na ₂ SO ₄ dielektrolisis dengan elektroda Pt					
	menggunakan muatan listrik sebesar 0,2 F!					
	Jawab					
	Reaksi elektrolisis Larutan Na ₂ SO ₄ dengan elektroda Pt di Anode maupun Katode menghasilkan gas:					
	$Na_2SO_4(aq) \rightarrow 2Na^+(aq) + SO_4^{2-}(aq)$					
	Katode: $2H_2O(l) + 2e^- \rightarrow \mathbf{H_2(g)} + 2OH^-(aq)$ (menghasilkan gas $\mathbf{H_2}$)	2				
	Anode: $2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e$ (menghasilkan gas O_2)	2				

No.	Jawaban	Skor					
	muatan listrik 0,2 $F = \frac{0.2 F}{1^F/_{mol e^-}} = 0,2 \text{ mol } e^-$	3					
	Katode: $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH(aq)$						
	Mol 0,2 mol 0,1 mol						
	Volume = $0.1 mol \times 22.4 \frac{L}{mol}$	5					
	(STP) = 2.24 L						
	Jadi Volume gas H ₂ yang dihasilkan dari elektrolisis larutan Na ₂ SO ₄ dengan elektroda Pt adalah 2,24 L						
	Anode: $2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e$						
	Mol 0,05 mol 0,2 mol	5					
	Volume = $0.05 mol \times 22.4 ^{L}/_{mol}$	3					
	=1,12 L						
2	Jadi Volume gas O ₂ yang dihasilkan dari elektrolisis larutan Na ₂ SO ₄ dengan elektroda Pt adalah 1,12 L						
3.	Aluminium diperoleh dari elektrolisis lelehan Al ₂ O ₃ . Berapa gram aluminium yang dapat diperoleh jika digunakan arus 10 ampere selama 5 menit? (Ar Al=27 g mol ⁻¹).						
	J a w a b						
	Reaksi elektrolisis lelehan Al ₂ O ₃ yang menghasilkan Aluminium ada di Katode:						
	$Al_2O_3(aq) \to 2Al^{3+}(aq) + 3O^{2-}(aq)$	2					
	Katode: $Al^{3+}(aq) + 3e^- \rightarrow Al(s)$						
	$mol\ e^{-} = \frac{(I \times t)C}{96500\ ^{C}/_{mol\ e^{-}}} = \frac{(10\ A \times 5\ menit \times 60\ ^{detik}/_{menit})C}{96500\ ^{C}/_{mol\ e^{-}}} = 0,03\ mol\ e^{-}$ Katode: Al ³⁺ (aq) + 3e ⁻ \rightarrow Al(s) Mol 0,03 mol 0,01 mol	3					
	96500 ^C / _{mol e} - 96500 ^C / _{mol e} -	100					
	Katode: $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$						
		5					
	$= 0.01 mol \times 27^{g}/_{mol}$						
	=0,27 g						
	Jadi massa Aluminium yang dihasilkan dari elektrolisis lelehan Al ₂ O ₃ adalah 0,27 gram						
4.	Pada elektrolisis larutan CuSO ₄ dihasilkan 25,4 gram endapan Cu pada katode. Hitunglah volume gas H ₂ (0° C, 1						
	atm) yang dibebaskan pada elektrolisis larutan H ₂ SO ₄ encer dengan jumlah arus listrik yang sama! (Ar Cu = 63,5						
	$g \text{ mol}^{-1}$; Ar O = 16 g mol ⁻¹)						
	Jawab						
	Reaksi elektrolisis Larutan CuSO ₄ di Katode menghasilkan 25,4 gram endapan Cu:	2					
	$CuSO_4(aq) \rightarrow Cu^{2+}(aq) + SO_4^{2-}(aq)$ $CuSO_4(aq) \rightarrow Cu^{2+}(aq) + SO_4^{2-}(aq)$	2					
	Katode: $Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$ (menghasilkan 25,4 gram endapan Cu)						
	Katode: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	4					
	Massa 25,4 g 25 4 a 25 4 a						
	$= \frac{25,4 g}{63,5 \frac{g}{mol}}$						
	0.5, 3 mol $= 0.4 mol$						
	Mol e' yang dihasilkan pada elektrolisis larutan CuSO ₄ diatas adalah 0,8 mol. Dengan jumlah arus listrik						
	yang sama maka jumlah mol e juga sama pada elektrolisis larutan H ₂ SO ₄ encer.						
	Reaksi elektrolisis Larutan H ₂ SO ₄ di Katode:						
	$H_2SO_4(aq) \to 2H^+(aq) + SO_4^{2-}(aq)$	2					
	Katode: $2H^+(aq) + 2e^- \rightarrow \mathbf{H}_2(\mathbf{g})$						
	Katode: $2H^+(aq) + 2e^- \rightarrow H_2(g)$						
	Mol 0,8 mol 0,4 mol	5					
	$Volume (0^{\circ}) = 0.4 mol \times 22.4 L/mol$	3					
	C, 1 atm) =8,96 L						
	Jadi Volume gas H ₂ yang dihasilkan dari elektrolisis larutan H ₂ SO ₄ adalah 8,96 L	50					
Skor Maksimum							

Nilai peserta didik = $\frac{Skor\ perolehan}{Skor\ maksimum} \times 100$

SOAL REMIDIAL

Kisi-Kisi Soal Uraian

Satuan Pendidikan : SMA ...

Mata Pelajaran : Kimia

Kelas / Semester : XII / Gasal

Tema : REAKSI REDOKS DAN ELEKTROKIMIA

No.	Kompetensi Dasar	Sub Tema	Indikator Soal	Level Kognitif	No. Soal	Bentuk Soal
			Stoikiometri reaksi redoks yang melibatkan muatan listrik (Coulomb) dalam sel elektrolisis	Konseptual C3	1	Uraian
	Menerapkan stoikiometri reaksi redoks dan hukum	Stoikiometri	Stoikiometri reaksi redoks yang melibatkan muatan listrik (Faraday) dalam sel elektrolisis	Konseptual C3	2	Uraian
3.6.	Faraday untuk menghitung besaran besaran yang terkait sel	Reaksi Elektrolisis	Stoikiometri reaksi redoks yang melibatkan Arus Listrik (Ampere) dalam sel elektrolisis	Konseptual C3	3	Uraian
	elektrolisis		Stoikiometri reaksi redoks yang melibatkan arus listrik yang sama dialirkan ke dalam dua atau lebih sel elektrolisis yang berbeda	Konseptual C3	4	Uraian

Rumusan Butir Soal Uraian Berdasarkan Kisi-Kisi di atas.

- 1. Tentukan pH larutan 1 liter larutan NaCl dielektrolisis dengan listrik 1930 C!
- 2. Hitunglah massa logam nikel yang mengendap di katode jika elektrolisis larutan NiSO₄ menggunakan arus 5 Faraday! (Ar Ni = 59 g mol⁻¹)
- 3. Berapakah volume gas yang dihasilkan dalam keadaan STP jika arus listrik sebesar 5 Ampere dialirkan ke dalam larutan AgNO₃ dengan elektroda grafit selama 2 jam?
- 4. Arus listrik 1,5 A dialirkan secara seri kedalam tiga larutan AgNO3; Cu(NO3)2; dan Fe(NO3)3 selama 3,5 jam. Hitung massa setiap logam yang diendapkan pada katode. (Ar Ag = 108 g mol⁻¹, Ar Cu = 63,5 g mol⁻¹; dan Fe = 56 g mol⁻¹)

Pedoman Penskoran

No.	Jawaban	Skor				
1.	Tentukan pH larutan 1 liter larutan NaCl dielektrolisis dengan listrik 1930 C!					
	Jawab					
	Untuk menentukan pH pada elektrolisis larutan NaCl dibutuhkan ion OH yang dihasilkan dari katode:					
	$NaCl(aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$	2				
	Katode: $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ (menghasilkan ion OH ⁻)					
	1930 C 1930 C 1930 C	3				
	muatan listrik 1930 $C = \frac{1930 C}{96500 C/mol e^{-}} = 0.02 mol e^{-}$					
	Katode: $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-$	2				
	(aq)					
	Mol 0,02 mol 0,02 mol 0,02 mol					
	$[OH^{-}] = \frac{0.02 \ mol}{1 \ I} = 0.02 \ M \ atau \ 2 \times 10^{-2} M$	3				
	$pOH = -\log[OH^{-}] = -\log 2 \times 10^{-2} = 2 - \log 2$	3				
	$pH = 14 - pOH = 14 - (2 - \log 2) = 12 + \log 2$					
	Jadi pH larutan 1 liter larutan NaCl dielektrolisis dengan listrik 1930 C adalah 12+log2					
2.	Hitunglah massa logam nikel yang mengendap di katode jika elektrolisis larutan NiSO ₄ menggunakan arus 5					
	Faraday! (Ar Ni = 59 g mol^{-1})					
	Jawab	2				
	Reaksi elektrolisis Larutan Na ₂ SO ₄ dengan elektroda Pt di Anode maupun Katode menghasilkan gas:					
	$NiSO_4(aq) \rightarrow Ni^{2+}(aq) + SO_4^{2-}(aq)$					
	Katode: $Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	3				
	muatan listrik 5 $F = \frac{5 F}{1^F/_{mol e^-}} = 5 mol e^-$	3				
	· nioi e					

No.	Jawaban								
	Katode:	Ni ²⁺ (aq)	+ 2e ⁻	\rightarrow Ni(s)	100				
	Mal		£1	$= 5 mol \times 59^{g}/_{mol}$	5				
	Mol		5 mol	=295 g					
71	Jadi massa loga	m nikel yang m	engendap di katode	pada elektrolisis larutan NiSO ₄ adalah 295 gram					
3.	_			aan STP jika arus listrik sebesar 5 Ampere dialirkan ke dalam					
		_	la grafit selama 2 jar	n?					
	Jawa		1 '11	1 11 4 1	2				
	AgNO ₃ (aq) \rightarrow		g menghasilkan gas a	ada di Anode:	2				
			(<i>aq)</i> H ⁺ (<i>aq</i>) + 4e <mark>(mengh</mark> :	osilkon gas ()					
	Alloue. $2H_2O(t)$	$0 \rightarrow O_2(g) + 41$	n (uq) + 4e (mengha	asiikaii gas O2)					
		(5A)	× 2. jam × 3600 detik/,)c	3				
	$mol\ e^- = \frac{0}{96500}$	$\frac{C}{C}$ = $\frac{(SI)^{C}}{C}$	× 2 jam × 3600 ^{detik} /jar 96500 ^C / _{mol e} -	$\frac{n}{s} = 0.37 mol e^-$					
		· mot e	, mot e						
	Anode:	$2H_2O(l) \rightarrow$	$O_2(g)$	$+4H^{+}(aq) +4e$					
	Mol		0,093 m		_				
	Volume		$= 0.093 mol \times 3$	$22.4^{L}/_{mol}$	5				
	(STP)		=2,083	1100					
	Jadi volume gas	s O ₂ yang dihasi	lkan adalah 2,083 L						
4.	Arus listrik 1,5	A dialirkan se	cara seri kedalam ti	ga larutan AgNO ₃ ; Cu(NO ₃) ₂ ; dan Fe(NO ₃) ₃ selama 3,5 jam.					
	_	etiap logam yan	ng diendapkan pada l	katode. (Ar Ag = 108 g mol^{-1} , Ar Cu = 63.5 g mol^{-1} ; dan Fe =					
	56 g mol ⁻¹)								
	Jawab								
	$mol\ e^{-} = \frac{(I \times t)C}{96500\ C/mol\ e^{-}} = \frac{\left(1,58\ A \times 3,54\ jam \times 3600\ detik/Jam\right)C}{96500\ C/mol\ e^{-}} = 0,2\ mol\ e^{-}$								
		ktrolisis larutan	· mor c						
	Katode:	$A\sigma^+(aa)$	+ 1e ⁻	\rightarrow Ag(s)					
	Mol	ng (uq)	0,2 mol	0,2 mol					
	WIOI		0,2 11101	$= 0.2 \text{ mol} \times 108^{9}/\text{mol}$	5				
	Massa								
	Iadi massa	logam Perak va	ano dihasilkan dari e	=21,6 g lektrolisis larutan AgNO ₃ adalah 21,6 gram					
		ktrolisis larutan		iona on one of the control of the co					
	Katode:	$Cu^{2+}(aq)$	$+ 2e^{-}$	\rightarrow Cu(s)					
	Mol	Cu (uq)	0,2 mol	0,1 mol	5				
	Annual Property		0,2 11101	$= 0.1 mol \times 63.5 \frac{g}{mol}$	3				
	Massa			= 6,35 g					
	Jadi massa	logam Tembao	a vang dihasilkan da	uri elektrolisis larutan Cu(NO ₃) ₂ adalah 6,35 gram					
		ktrolisis larutan							
	Katode:	$Fe^{3+}(aq)$	$+$ $3e^{-}$	\rightarrow Fe (s)					
	Mol	= = (0.4)	0,2 mol	0,067 mol	5				
	$-0.067 mol \times 56^{9}/$								
				Wasa					
	Massa								
		logam Resi va	ng d <mark>ihas</mark> ilkan dari ele	=3,73 g ektrolisis larutan Fe(NO ₃) ₃ adalah 3,73 gram					

Nilai peserta didik = $\frac{Skor\ perolehan}{Skor\ maksimum} \times 100$

Nilai Remidial memenuhi nilai KKM.

Kisi-Kisi Soal Uraian

Satuan Pendidikan : SMA ...

Mata Pelajaran : Kimia

Kelas / Semester : XII / Gasal

Tahun Pelajaran : 2020/2021

Tema : REAKSI REDOKS DAN ELEKTROKIMIA

No.	Kompetensi Dasar	Sub Tema	Indikator Soal	Level Kognitif	No. Soal	Bentuk Soal
3.6.	Menerapkan stoikiometri reaksi redoks dan hukum Faraday untuk menghitung besaran besaran yang terkait sel elektrolisis	Stoikiometri Reaksi Elektrolisis	Stoikiometri reaksi redoks yang melibatkan muatan listrik (Coulomb dan Faraday) dan Arus Listrik (Ampere) dalam sel elektrolisis Stoikiometri reaksi redoks yang melibatkan muatan listrik (Coulomb dan Faraday) dan Arus Listrik (Ampere) dalam sel elektrolisis	Konseptual C3 Konseptual C3	2	Uraian Uraian
			Stoikiometri reaksi redoks yang melibatkan arus listrik yang sama dialirkan ke dalam dua atau lebih sel elektrolisis yang berbeda	Konseptual C3	4	Uraian

Rumusan Butir Soal Uraian Berdasarkan Kisi-Kisi di atas.

- 1. Seorang peserta didik ingin melapisi sebuah lempeng besi dengan perak. Pelapisan tersebut dilakukan dengan mengelektrolisis larutan Ag⁺ selama ½ jam dengan arus listrik sebesar 10 A. Jika massa jenis perak 10,5 g cm⁻³ dan ketebalan lapisan perak yang diinginkan adalah 0,1 cm, tentukan massa perak yang digunakan dan luas permukaan yang dihasilkan! (Ar Ag = 108 g mol⁻¹)
- 2. Pada suatu proses elektrolisis, arus listrik 1930 C dilewatkan dalam leburan suatu zat elektrolit dan mengendapkan 1,5 gram unsur X pada katode. Jika Ar X = 150 g mol⁻¹, tentukan muatan ion X!
- 3. Arus sebesar *i* Ampere dapat mengendapkan 2,16 gram perak dari larutan perak nitrat dalam 1 jam. Berapa liter (STP) gas oksigen yang dihasilkan jika arus yang sama dialirkan ke dalam larutan asam sulfat selama 2 jam? (Ar Ag = 108 g mol⁻¹)

Jawaban

1. Seorang peserta didik ingin melapisi sebuah lempeng besi dengan perak. Pelapisan tersebut dilakukan dengan mengelektrolisis larutan Ag⁺ selama ½ jam dengan arus listrik sebesar 10 A. Jika massa jenis perak 10,5 g cm⁻³ dan ketebalan lapisan perak yang diinginkan adalah 0,1 cm, tentukan massa perak yang digunakan dan luas permukaan yang dihasilkan! (Ar Ag = 108 g mol⁻¹)

Jawab

Pelapisan lempeng besi dengan perak dilakukan dengan mengelektrolisis larutan Ag⁺ selama ½ jam dengan arus listrik sebesar 10 A. Massa perak yang dihasilkan dapat ditentukan di katoda dengan menghitung mol elektron yang dihasilkan terlebih dulu.

$$mol \ e^{-} = \frac{(I \times t)C}{96500 \ ^{C}/_{mol \ e^{-}}} = \frac{\left(10 \ A \times \frac{1}{2} \ jam \times 3600 \ ^{detik}/_{jam}\right)C}{96500 \ ^{C}/_{mol \ e^{-}}} = 0,187 \ mol \ e^{-}$$
Katode: $Ag^{+}(aq) + 1e^{-} \rightarrow Ag(s)$
Mol $0,187 \ mol$ $0,$

$$=20,196 g$$

Jadi massa perak yang dihasilkan adalah 20,196 gram

Luas permukaan yang dihasilkan

$$Volume = \frac{massa\ perak}{massa\ jenis\ perak} = \frac{20,196\ g}{10,5\ g/cm^3} = 1.92\ cm^3$$

Luas Permukaan =
$$\frac{Volume}{Ketebalan \ lapisan} = \frac{1,92 \ cm^3}{0,1 \ cm} = 19,2 \ cm^2$$

Jadi luas permukaan yang dihasilkan adalah 19,2 cm²

Pada suatu proses elektrolisis, arus listrik 1930 C dilewatkan dalam leburan suatu zat elektrolit dan mengendapkan 1,5 gram unsur X pada katode. Jika Ar X = 150 g mol⁻¹, tentukan muatan ion X!

muatan listrik 1930
$$C = \frac{1930 C}{96500 C/mol e^{-}} = 0.02 mol e^{-}$$

Katode:
$$X^{n+}(aq)$$
 + ne^{-} \rightarrow $X(s)$

$$= \frac{1,5 g}{150 g/mol}$$
Mol 0,02 mol

$$\frac{1}{n} = \frac{0,01 \ mol}{0,02 \ mol}$$
$$n = 2$$

Jadi muatan ion X adalah 2 atau ion X2+

3. Arus sebesar i Ampere dapat mengendapkan 2,16 gram perak dari larutan perak nitrat dalam 1 jam. Berapa liter (STP) gas oksigen yang dihasilkan jika arus yang sama dialirkan ke dalam larutan asam sulfat selama 2 jam? (Ar Ag = 108 g mol^{-1})

Pada elektrolisis larutan perak nitrat

Katode:
$$Ag^{+}(aq)$$
 + $1e^{-}$ \rightarrow $Ag(s)$

$$= \frac{2,16 g}{108 g/mol}$$

0,02 mol

Arus listrik yang mengalir pada elektrolisis larutan perak nitrat:

$$mol e^{-} = \frac{(I \times t)C}{96500 \, C/_{mol e^{-}}}$$

$$0,02 \, mol e^{-} = \frac{\left(i \times 1 \, jam \times 3600 \, \frac{detik}{jam}\right)}{96500 \, A.det/_{mol e^{-}}}$$

$$iA = \frac{0,02 \times 96500}{3600} = 0,54 \, A$$

Pada elektrolisis larutan perak nitrat menghasilkan gas O2 menunjukkan di Anode menggunakan

mol e jika arus yang sama dialirkan ke dalam larutan asam sulfat selama 2 jam:

$$mol \ e^{-} = \frac{(I \times t)C}{96500 \ C/mol \ e^{-}} = \frac{\left(0.54 \ A \times 2 \ jam \times 3600 \ detik/jam\right)C}{96500 \ C/mol \ e^{-}} = 0.04 \ mol \ e^{-}$$

Anode:
$$2H_2O(l) \rightarrow \mathbf{O_2(g)} + 4H^+(aq) + 4e$$

Mol 0,01 mol 0,04 mol

Volume $= 0.01 \, mol \times 22.4^{L}/mol$

Volume

(STP)

Jadi Volume gas O₂ yang dihasilkan dari elektrolisis larutan H₂SO₄ adalah 0,224 L