

Lembar Kegiatan Peserta Didik(LKPD) Definisi Matriks, Kesamaan Matriks dan Transpose

Nama Kelompok :	Satuan Pendidikan	:	SMA
1	Mata Pelajaran	:	Matematika
2	Kelas/Semester	:	XI/I
3	Sub MateriPokok	:	Definisi , kesamaan
4	matriks, dan tranpo	ose	matriks
¬	(

KD : Menjelaskan matriks dan kesamaan matriks dengan menggunakan masalah kontekstual dan perkalian, serta transpose

IPK

- 3.3.1. Mendefinisikan matriks
- 3.3.2. Menyebutkan jenis-jenis matriks
- 3.3.3. Menyusun kesamaan matriks dengan memperhatikan ordo matrik
- 3.3.4 Menyusun transpose matriks dengan memperhatikan ordo matrik
- 4.3.1 Menyelesaikan masalah kontekstual dengan menggunakan konsep definisi matriks
- 4.3.2 Menyelesaikan masalah kontekstual dengan menggunakan konsep jenis-jenis matriks
- 4.3.3 Menyelesaikan masalah kontekstual dengan menggunakan konsep kesamaan matriks
- 4.3.4 Menyelesaikan masalah kontekstual dengan menggunakan konsep tranpose matriks

Waktu: 30 menit

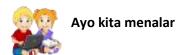
Petunjuk : diskusikan lembar kerja siswa secara berkelompok melalui WA Grup Kelompok

Ayo kita amati

Perhatikan tabel di bawah ini! Berikut merupakan penjualan beberapa jenis buah dalam satuan kilo di kios "Rejeki" pada satu bulan penjualan:

Tabel 1

	Minggu 1	Minggu 2	Minggu 3	Minggu 4
Mangga	10	16	15	12
kelengkeng	15	10	20	18
Melon	20	22	16	20
Jeruk	10	14	10	16



Jika judul baris adalah minggu 1-4 dan judul kolom adalah jenis buah (Mangga, Kelengkeng, melon dan jeruk). Coba sajikan data tentang pejualan beberapa jenis buah dalam bentuk matriks dimana unsur elemen pada baris ke i kolom ke jmenyatakan penjualan buah ke i pada minggu ke j:

Berdasar matriks di atas, misal matriks dari tabel 1 dinamakan matriks A bentuk matriks di atas mempunyai ... baris, ... kolom dan mempunyai ... elemen matriks.

- 1. Elemen matriks pada baris 2 kolom 2 adalah
- 2. Elemen matriks pada baris 4 kolom 3 adalah
- 3. Elemen matriks pada baris 2 kolom 4 adalah
- 4. Elemen matriks pada baris 4 kolom 2 adalah
- 5. Elemen matriks pada baris 3 kolom 4 adalah

Amati matriks A, bentuk matriks di atas merupakan susunan dari ... yang disusun berdasar ditandai dengan

Jika bentuk matriks A di atas dapat kita nyatakan dalam bentuk:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & a_{ij} & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} merupakan elemen matriks A pada baris ke-i kolom ke-j.

Perhatikan matriks A di atas, matriks A mempunyai baris sebanyak m dan kolom sebanyak n, sehingga matriks A dikatakan sebagai matriks berukuran (berordo)

··· ·

Matriks A yang berordo dapat ditulis A_{\dots} .

Jadi, suatu matriks A berukuran $m \times n$ adalah susunan dalam bentuk dan terdiri atas ... elemen yang disusun dalam ... baris dan ... kolom.

Jenis-jenis matriks

- 1. Dipunyai matriks $A=(4\ 1)$ dan $A=(1\ 2\ 3)$ Berdasar matriks A dan matriks B di atas matriks berordo $m\times n$ dengan nilai m=1, sehingga diperoleh matriks berordo $1\times n$ terdiri atas 1 baris dan n elemen. Bentuk matriks di atas disebut matriks ...
- 2. Dipunyai matriks $A = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$. Misal dipunyai suatu matriks A berordo $m \times n$ dengan nilai n= 1, sehingga diperoleh matriks berordo $m \times 1$ terdiri atas 1 kolom dan n elemen. Bentuk matriks di atas disebut matriks ...
- 3. Diberikan bentuk-bentuk matriks sebagai berikut ini:

$$A = \begin{pmatrix} 1 & 7 \\ 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 9 & 7 \\ 3 & 4 & 2 \\ 1 & 2 & 6 \end{pmatrix}$$

Perhatikan contoh-contoh matriks di atas, untuk matriks A berrodo dan matriks B berordo berdasar masing-masing matriks di atas apakah banyak baris=banyak kolom ? matriks tersebut dinamakan matriks ...

- 4. Misalkan dipunyai $A = \begin{pmatrix} 1 & 1 & 6 \\ 0 & 3 & 6 \\ 0 & 0 & 8 \end{pmatrix}$, dan $B = \begin{pmatrix} 1 & 0 & 0 \\ 5 & 3 & 0 \\ 1 & 3 & 8 \end{pmatrix}$, matriks A dan matriks B berordo pehatikan elemen-elemen yang ada dibawah diagonal utama dan di atas diagonal utama semuanya bernilai bentuk matriks-matriks tersebut dinamakan
- 5. Perhatikan matriks-matriks berikut ini:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Berdasar matriks-matriks di atas merupakan matriks persegi, pad diagonal utamanya bernilai matriks tersebut disebut dengan matriks ... dan disimbolkan dengan

1.	Matriks adalah
2.	Baris dari suatu matriks adalah bagian dari sususan bilangan yang dituliskan
3.	Kolom dari suatu matriks adalah bagian dari sususan bilangan yang dituliskan
4.	Elemen suatu matriks adalah

Transpose dari suatu matriks

5. Ordo dari suatu matriks A berukuran $m \times n$ adalah

Ayo kita menalar

Perhatikan matriks dari tabel 1. Misal matriks A adalah matriks dari tabel 1

$$A = \begin{pmatrix} 15 & 16 & 15 & 12 \\ 15 & 10 & 20 & 18 \\ 20 & 22 & 16 & 20 \\ 10 & 14 & 10 & 16 \end{pmatrix}$$

Matriks A terdiri dari 4 baris dan 4 kolom. Maka kita dapatkan transpose:

Transpose matriks
$$A(A^T) = \begin{pmatrix} 15 & 15 & 20 & 10 \\ 16 & 10 & 22 & 14 \\ 15 & 20 & 16 & 10 \\ 12 & 18 & 20 & 16 \end{pmatrix}$$

Perhatikan perbedaan matriks A dengan A^T . Apakah elemen-elemen yang seletak mempunyai bilangan yang berbeda ? jika iya, coba jawablah pertanyaan dibawah ini:

- 1. Baris pertama matriks ${\it A}$ ditulis menjadi kolom pertama pada ${\it A}^{\it T}$

- 1 Panic kaomnat matrike A ditulia

Berdasar pertukaran baris dari matriks A ke kolom A^T disebut dengan **tranpose** matriks. Notasi transpose matriks A adalah A^T atau A' atau \tilde{A} . Misal matriks A:

$$A = \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \cdots a_{1n} \\ a_{21} \ a_{22} \ a_{23} \cdots a_{2n} \\ a_{31} \ a_{32} \ a_{33} \cdots a_{3n} \\ \cdots \ \cdots \ \cdots \ \cdots \\ a_{m1} a_{m2} a_{m3} \cdots a_{mn} \end{pmatrix}$$

Matriks A mempunyai ordo mxn, dan elemen-elemen pada matriks A a_{ij} (pada baris ke-i dan kolom ke-j). Maka dapat kita tentukan:

Transpose matriks berordo $m \times n$ adalah sebuah matriks berordo $n \times m$ yang diperoleh dari matriks dengan

Kesamaan 2 matriks

Ayo kita menalar

Coba amatilah matriks A dari tabel 1 pada bagian sebelumnya. Matrik yang terbentuk adalah

$$A = \begin{pmatrix} 15 & 16 & 15 & 12 \\ 15 & 10 & 20 & 18 \\ 20 & 22 & 16 & 20 \\ 10 & 14 & 10 & 16 \end{pmatrix} \text{, kemudian dipunyai matrik } B = \begin{pmatrix} 15 & 16 & 15 & 12 \\ 15 & 10 & 20 & 18 \\ 20 & 22 & 16 & 20 \\ 10 & 14 & 10 & 16 \end{pmatrix}$$

Perhatikan matriks A dan matriks B, apakah elemen-elememen yang seletak mempunyai elemen yang benilai sama ? jika iya, maka adapat dinyatakan Sehingga, jika dipunyai:

$$A = \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \dots a_{1n} \\ a_{21} \ a_{22} \ a_{23} \dots a_{2n} \\ a_{31} \ a_{32} \ a_{33} \dots a_{3n} \\ \dots \ \dots \ \dots \ \dots \ \dots \\ a_{m1} a_{m2} a_{m3} \cdots a_{mn} \end{pmatrix}, \ \mathsf{B} = \begin{pmatrix} b_{11} \ b_{12} \ b_{13} \dots b_{1n} \\ b_{21} \ b_{22} \ b_{23} \dots b_{2n} \\ b_{31} \ b_{32} \ b_{33} \dots b_{3n} \\ \dots \ \dots \ \dots \ \dots \ \dots \\ b_{m1} b_{m2} b_{m3} \cdots b_{mn} \end{pmatrix}, \ \mathsf{jika} \ \mathsf{semua} \ \mathsf{elemen} \ \mathsf{dari} \ \mathsf{matriks}$$

A dan matriks B adalah bilangan real, matriks A dan B memiliki ordo ... kemudian setiap elemen dari masing-masing matriks yang seletak memeliki elemen ... maka dinamakan ... atau matriks A dan matriks B ... , a_{ij} b_{ij} (untuk semua elemen i dan j) .

Jika dipunyai 2 matriks A dan matriks B, matriks A berordo $A_{m \times n}$ dan $B_{m \times n}$ dikatakan sama jika memenuhi syarat :

- a. Masing-masing matriks A dan B memeiliki
- b. Semua nilai yang seletak pada matriks A dan matriks B mempunyai $a_{ij} \dots b_{ij}$ (untik smeua nilai i dan j).