DETERMINAN DAN INVERS MATRIKS ORDO 2X2

Oleh: Fifi Afiati, S.pd

PPG MATEMATIKA TAHAP 1 TAHUN 2020 UNIVERSITAS WIDYADHARMA KLATEN

DETERMINAN MATRIKS ORDO 2X2

Determinan ialah sebuah nilai yang dapat di hitung dari unsur suatu matriks persegi. Determinan matriks A ditulis dengan tanda det(A), det A, atau | A |. Determinan dapat di anggap sebagai faktor penskalaan transformasi yang digambarkan oleh matriks.

Tujuan Pembelajaran

Melalui pembelajaran kooperatif (cooperative learning) berbasis TPACK, diharapkan siswa mampu menganalisis dan menyelesaikan masalah determinan dan invers matriks ordo 2x2 dengan benar.

Jika suatu matrik A berordo 2 x 2 maka determinan matriks A diperoleh dengan mengurangkan hasil perkalian diagonal utama dengan diagonal kiri sebagai berikut:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

diagonal utama = a x d diagonal kiri = c x b

Sehingga determinan matriks A ditulis DET A dirumuskan :

$$DetA = a.d - b.c$$

Contoh soal determinan matriks ordo 2x2

Tentukan determinan dari matriks berikut ini :

1.

$$A = \begin{bmatrix} 4 & -3 \\ 2 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & -3 \\ 2 & -2 \end{bmatrix}$$

$$\det A = 4. -2 - (-3.2)$$

$$= -8 - (-6)$$

$$= -8 + 6$$

$$= -2$$

Jadi determinan dari matriks A adalah -2

$$B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$

$$\det B = 3.3 - (4.2)$$

$$=9-8$$

$$=1$$

Jadi determinan dari matriks B adalah 1

Adjoin suatu matriks merupakan transpose dari suatu matriks yang elemen elemennya merupakan kofaktor dari elemen-elemen matriks tersebut.

Selengkapnya akan kalian pahami saat mempelajari invers matriks ordo 3x3

Menentukan adjoin matriks ordo 2x2

Jika terdapat suatu matriks A berordo 2x2 maka adjoin matriks A ditulis "adjA" ditentukan dengan menukar posisi elemen diagonal utama, kemudian untuk diagonal kiri dikalikan dengan -1

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow adjA = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

INVERS MATRIKS ORDO 2X2

Suatu matriks persegi memiliki invers, dimana invers matriks adalah kebalikan dari matriks tersebut. Jika suatu matriks A memiliki invers matriks ditulis A-1 maka hasil perkalian antara matriks A dengan inversnya akan menghasilkan matriks identitas.

A. $A^{-1} = I$

INVERS MATRIKS ORDO 2 X 2

Jika suatu matrik A berordo 2 x 2 maka INVERS matriks A ditulis A-1 diperoleh dengan persamaan berikut ini:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{\det A}.adjoinA$$

$$A^{-1} = \frac{1}{\det A} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Contoh soal invers matriks ordo 2x2

Tentukan invers dari matriks berikut ini:

1.
$$A = \begin{bmatrix} 4 & -3 \\ 2 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$

Pada contoh soal determinan sudah didapatkan determinan dari matriks A adalah -2. sekarang kita tentukan adjoin matriks A

$$A = \begin{bmatrix} 4 & -3 \\ 2 & -2 \end{bmatrix} \rightarrow AdjA = \begin{bmatrix} -2 & 3 \\ -2 & 4 \end{bmatrix}$$

Sehingga invers matriks A adalah:

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} -2 & 3 \\ -2 & 4 \end{bmatrix} = \begin{vmatrix} 1 & -\frac{3}{2} \\ 1 & -2 \end{vmatrix}$$

Jadi invers dari matriks A adalah $A^{-1} =$

$$A^{-1} = \begin{bmatrix} 1 & -\frac{3}{2} \\ 1 & -2 \end{bmatrix}$$

Pada contoh soal determinan sudah didapatkan determinan dari matriks B adalah 1. sekarang kita tentukan adjoin matriks B

$$B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \rightarrow adjB = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$$

Sehingga invers matriks B adalah:

$$B^{-1} = \frac{1}{1} \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$$

Jadi invers dari matriks adalah

$$B^{-1} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$$

PENGGUNAAN INVERS MATRIKS PADA MASALAH KONTEKSTUAL

Arman membeli 5 pensil dan 3 penghapus, sedangkan Susi membeli 4 pensil dan 2 penghapus di toko yang sama. Di kasir, Arman membayar Rp 11.500,00 sedangkan Susi membayar Rp 9.000,00. Jika Dodi membeli 6 pensil dan 5 penghapus, berapa ia harus membayar?

Penyelesaian:

Dimisalkan harga satuan pensil = x dan harga satuan penghapus = y. Disusun ke dalam sistim persamaan linear dua variabel (SPLDV)

$$5x + 3y = 11.500$$

$$4x + 2y = 9.000$$

Ubah sistem persamaan diatas ke dalam bentuk matriks berikut;

$$\left[\begin{array}{cc} 5 & 3 \\ 4 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 11.500 \\ 9.000 \end{array}\right]$$

Dengan menggunakan invers matriks ordo 2x2 maka berlaku :

$$\left[\begin{array}{cc} 5 & 3 \\ 4 & 2 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 11.500 \\ 9.000 \end{array}\right]$$

$$A.X=B$$

 $X = A^{-1}.B$

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \frac{1}{(5)(2)-(3)(4)} \left[\begin{array}{cc} 2 & -3 \\ -4 & 5 \end{array}\right] \left[\begin{array}{c} 11.500 \\ 9.000 \end{array}\right]$$

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \frac{_1}{^{10-12}} \left[\begin{array}{c} 2(11.500) + (-3)(900) \\ -4(11.500) + 5(9.000) \end{array}\right]$$

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 2.000 \\ 500 \end{array}\right]$$

$$x = 2.000$$
 dan $y = 500$

Thank you

